您當前位置: 首頁  >  科學研究  >  伟德動态  >  正文

伟德動态

計算機科學技術專家講座(三十五)——黃德雙

發布日期:2019-12-09 發布人: 點擊量:

報告題目:Motif Mining in DNA Sequences by Deep Neural Networks

報告時間:20191211日下午16:30

報告地點:伟德国际BETVlCTOR中心校區計算機大樓A521

報告人黃德雙

報告人簡介

黃德雙,工學博士,同濟大學特聘教授(二級教授)、博士生導師,中國科技大學博士生導師、兼職教授,2000年度中科院“百人計劃”入選者。同濟大學認知互聯網國際⏭➰聯合實驗室主任,機器學習與系統生物學研究所所長, 國家自然科學基金委第十四屆專家評審組成員, 國家新一代人工智能重大項目首席科學家。國際模式識别學會會士(IAPR Fellow),國際智能計算學術會議Founding Chair,國際神經網絡學會(INNS)常務理事,中國計算機學會生物信息學專業委員會副主任委員IEEE/ACM Transactions on Computational Biology and Bioinformatics, Neural Networks等國際雜志編委。已發表SCI收錄論文220餘篇,SCI他引3800餘次,入選2014-2018年度愛思唯爾(Elsevier)Scopus數據庫中國高被引學者榜單(計算機科學卷),出版專著3本,主編論文集49本,曾獲1997年度第八屆全國優秀科技圖書二等獎 (排名唯一),2010年度安徽省自然科學一等獎 (排名第一) ,2016年度教育部自然科學一等獎(排名第一),2018年度吳文俊人工智能科技進步一等獎(排名第一)。

報告内容簡介

Recent biological studies have shown that binding-site motif mining plays a crucial role in the transcription and translation phases of gene expression, so the study of motif will help to understand the complex biomolecular system and explain disease pathogenesis. Generally, how to carry out an in-depth research on motifs through computational methods has always been one of the core issues in the modeling of life system gene regulation processes. In this report, I will first present the fundamental issue for motif prediction of biological sequences, then systematically present motif prediction of biological sequences in combination with the popular emerging technology “Deep Neural Networks”. Firstly, several classical models for deep neural network and the research status of biological sequence motif prediction will be briefly introduced. Secondly, the existing shortcomings of deep-learning based motif prediction is discussed, and correspondingly a variety of improved motif prediction methods including high-order convolutional neural network architecture, weakly-supervised convolutional neural network architecture, deep-learning based sequence + shape framework and bidirectional recurrent neural network for DNA motif prediction, multi-scale convolution gated recurrent neural network model and improved capsule network for RNA motif prediction, are introduced. Finally, some new research problems in this aspect will be pointed out and over-reviewed.

 

主辦單位

伟德国际BETVlCTOR

伟德国际BETVlCTOR軟件學院

伟德国际BETVlCTOR計算機科學技術研究所

符号計算與知識工程教育部重點實驗室

伟德国际BETVlCTOR國家級計算機實驗教學示範中心

伟德国际BETVlCTOR腫瘤系統生物學科學家工作室

伟德国际BETVlCTOR中日聯誼醫院腫瘤系統生物學實驗室

CCF長春、YOCSEF長春、CCF吉大、吉林省計算機學會


Baidu
sogou