您當前位置: 首頁  >  師資隊伍  >  教研室  >  移動智能計算

移動智能計算

王恩

個人簡介:

王恩,教育部重大人才工程青年學者,伟德国际BETVlCTOR教授,博士生導師,軟件學院副院長

5 年以第一或通訊作者發表論文 60餘 篇:CCF A 27 (第一作者 CCF A 13 ),中科院 1 10 篇,CCF B 17 篇。論文中 IEEE/ACM Transactions 22 篇。(1)代表性會議:IEEE INFOCOM6 篇)、ACM CSCWIEEE ICDESECONICDCSIWQoS2 篇)、ICDMICPP等。(2)代表性期刊:IEEE/ACM ToN3 篇)、IEEE TMC6 篇)、IEEE TKDE4 篇)、IEEE JSACIEEE TDSCTITSTMM、計算機學報、計算機研究與發展等。由 Springer 出版學術專著 1 :《Advances in Mobile Crowdsourcing: From Theory to Practice》。

201410月受國家留學基金委資助,到美國Temple大學留學,20166月伟德国际BETVlCTOR計算機系統結構專業博士畢業,被評伟德国际BETVlCTOR首屆十佳研究生,同年破格留校任教,并被校長直聘為副教授,2020年破格聘任教授。先後獲得吉林省優秀博士學位論文,ACM China 優秀博士學位論文,入選伟德国际BETVlCTOR首屆“培英工程”資助計劃(50/年)吉林省青年人才托舉計劃(全省12人)吉林省人才“18條”政策CCF-百度松果基金獲伟德国际BETVlCTOR力旺傑出博士後獎2022年入選伟德国际BETVlCTOR“唐敖慶學者”領軍教授吉林省第八批拔尖創新人才(吉林省人民政府)2023年入教育部重大人才工程青年學者

主持國家自然科學基金面上項目2國家自然科學基金青年基金項目CCF-百度松果基金,中國博士後特别資助項目,中國博士後面上項目,國防科技重點實驗室基金,吉林省自然科學基金項目。參與承擔科技部重點研發計劃和人工智能2030重大項目課題,國家863計劃、工信部重點科技發展計劃等多項課題,累計可支配經費200餘萬元。

招生簡介:

招收計算機相關專業的博士和碩士研究生:歡迎對下面相關領域(群體智能感知,區塊鍊和隐私保護, 人工智能與大數據, 複雜系統,推薦系統等)研究感興趣, 具有較好數學和英語基礎,尤其是有随機過程、博弈論、算法設計與分析、圖論、深度學習、強化學習、知識推理等知識儲備, 并較為熟練掌握工程開發技術的同學報考我的的博士或碩士研究生。如果你不确定你的背景是否适合或者有其他的問題,可以随時通過郵件聯系我(wangen@jlu.edu.cnwangen0310@126.com)。


團隊新聞:

News(06/2023) Our paper “GS2-RS: A Generative Approach for Alleviating Cold start and Filter bubbles in Recommender Systems” is accepted by IEEE TKDECCF A!

News(06/2023) Our paper “Multi-Agent Reinforcement Learning Based File Caching Strategy in Mobile Edge Computing” is accepted by IEEE TONCCF A!

News(01/2023) Our paper “Zone-Enhanced Spatio-Temporal Representation Learning for Urban POI Recommendation” is accepted by IEEE TKDECCF A!

News(12/2022) Our paper “Spatiotemporal Transformer for Data Inference and Long Prediction in Sparse Mobile CrowdSensing” is accepted by IEEE INFOCOM 2023CCF A!

News(08/2022) Our paper “Outlier-Concerned Data Completion Exploiting Intra- and Inter-Data Correlations in Sparse CrowdSensing” is accepted by IEEE/ACM ToNCCF A!

News(07/2022) Our paper “Spatiotemporal Urban Inference and Prediction in Sparse Mobile CrowdSensing: a Graph Neural Network Approach” is accepted by IEEE TMCCCF A!

News(06/2022) Our paper “Bilateral Privacy-Preserving Worker Selection in Spatial Crowdsourcing” is accepted by IEEE TDSCCCF A!

News(06/2022) Our paper “Trustworthy and Efficient Crowdsensed Data Trading on Sharding Blockchain” is accepted by IEEE JSACCCF A!

News(10/2022) I will serve as TPC member of IEEE IPDPS 2023!

News(08/2022) I will serve as TPC member of IEEE AAAI 2023!

News(04/2022) I will serve as TPC member of IEEE INFOCOM 2023!


論文成果(第一或通訊作者):

1代表性期刊

1. En Wang, Yongjian Yang, Jie Wu, Wenbin Liu, Xingbo Wang "An Efficient Prediction-Based User Recruitment for Mobile Crowdsensing," IEEE Transactions on Mobile Computing, 2017, 17 (1): 16-28.CCF A, IF: 5.577

2. Yongjian Yang, Wenbin Liu, En Wang*, Jie Wu, "A Prediction-based User Selection Framework for Heterogeneous Mobile CrowdSensing," IEEE Transactions on Mobile Computing, 2018, 18 (11): 2460-2473.CCF A, IF:5.577

3. Wenbin Liu, Yongjian Yang, En Wang*, Hengzhi Wang, Zihe Wang, Jie Wu, "Dynamic Online User Recruitment With (Non-) Submodular Utility in Mobile CrowdSensing," IEEE/ACM Transactions on Networking, 2021, 29(5): 2156-2169. (CCF A, IF:3.56)

4. En Wang, Hengzhi Wang, Yongjian Yang, Wenbin Liu, "Truthful Incentive Mechanism for Budget-Constrained Online User Selection in Mobile Crowdsensing," IEEE Transactions on Mobile Computing, doi: 10.1109/TMC.2021.3083920. (CCF A, IF:5.577)

5. Hengzhi Wang, Yongjian Yang, En Wang*, Wenbin Liu, Yuanbo Xu, Jie Wu, "Truthful User Recruitment for Cooperative Crowdsensing Task: A Combinatorial Multi-Armed Bandit Approach," IEEE Transactions on Mobile Computing, 2022, doi:10.1109/TMC.2022. 3153451.  (CCF A, IF: 5.577)

6. Yuanbo Xu, Yongjian Yang, En Wang*, Fuzhen Zhuang, Hui Xiong, "Detect Professional Malicious User with Metric Learning in Recommender Systems," IEEE Transactions on Knowledge and Data Engineering, 2020. (CCF A, IF:6.977)

7. Yuanbo Xu, En Wang*, Yongjian Yang, Yi Chang, "A Unified Collaborative Representation Learning for Neural-Network based RecommenderSystems," IEEE Transactions on Knowledge and Data Engineering, 2021. (CCF A, IF:6.977)

8. Yongjian Yang, Yuanbo Xu, En Wang*, Jiayu Han, Zhiwen Yu, "Improving Existing Collaborative Filtering Recommendations via Serendipity-based Algorithm," IEEE Transactions on Multimedia, 2017, 20 (7): 1888-1900.CCF B, JCR Q1, IF: 6.513

9. Yuanbo Xu, Yongjian Yang, En Wang, Jiayu Han, Fuzhen Zhuang, Zhiwen Yu, Hui Xiong, "Neural Serendipity Recommendation: Exploring the Balance between Accuracy and Novelty with Sparse Explicit Feedback," ACM Transactions on Knowledge Discovery from Data, 2020, 14(4): 1-25. (CCF B, IF: 2.713)

10. En Wang, Mijia Zhang, Xiaochun Cheng, Yongjian Yang, Wenbin Liu, Huaizhi Yu, Liang Wang, Jian Zhang. "Deep Learning-Enabled Sparse Industrial CrowdSensing and Prediction," IEEE Transactions on Industrial Informatics, 2020, 17(9): 6170-6181. (JCR Q1, IF: 10.215)

11. Kaihao Lou, Yongjian Yang, En Wang*, Zheli Liu, Baker Thar, Bashir Ali Kashif, "Reinforcement Learning Based Advertising Strategy Using Crowdsensing Vehicular Data," IEEE Transactions on Intelligent Transportation Systems, 2020, 22(7): 4635 – 4647.JCR Q1, IF: 6.492

12. En Wang, Yongjian Yang, Jie Wu, Kaihao Lou, Dongming Luan, Hengzhi Wang, "User Recruitment System for Efficient Photo Collection in Mobile Crowdsensing," IEEE Transactions on Human-Machine Systems, 2019, 50(1): 1-12. (CCF B, JCR Q2, IF: 2.968)

13. Hengzhi Wang, Yongjian Yang, En Wang*, Liang Wang, Qiang Li, Zhiyong Yu, "Incentive Mechanism for Mobile Devices in Dynamic Crowd Sensing System," IEEE Transactions on Human-Machine Systems, 2020, 51(4): 365-375.CCF B, IF: 2.968

14. 王恩, 楊永健, 李莅, "基于動态半馬爾可夫路徑⚜⭐〰✝模型的DTN分簇路由方法," 計算機學報, 2015, 38(3): 483-499.(國内權威期刊)

15. 王恩, 楊永健, 李莅, "DTN中基于生命遊戲的擁塞控制策略," 計算機研究與發展, 2014, 51(11): 2393-2407.(國内權威期刊)

16. Yuanbo Xu, En Wang*, Yongjian Yang, Hui Xiong, “GS2-RS: A Generative Approach for Alleviating Cold start and Filter bubbles in Recommender Systems,” IEEE Transactions on Knowledge and Data Engineering, 2023. (CCF A, IF:6.977)

17. Yongjian Yang, Kaihao Lou, En Wang*, Wenbin Liu, Jianwen Shang, Xueting Song, Dawei Li, Jie wu, “Multi-Agent Reinforcement Learning Based File Caching Strategy in Mobile Edge Computing,” IEEE/ACM Transactions on Networking, 2023. CCF AIF3.796

18. Hengzhi Wang, Yongjian Yang, En Wang*, Xiulong Liu, Jingxiao Wei, and Jie Wu, “Bilateral privacy-preserving worker selection in spatial crowdsourcing,” IEEE Transactions on Dependable and Secure Computing, 2022.CCF AIF6.791

19. En Wang, Mijia Zhang, Wenbin Liu, Haoyi Xiong, Bo Yang, Yongjian Yang, Jie Wu, “Outlier-Concerned Data Completion Exploiting Intra- and Inter-Data Correlations in Sparse CrowdSensing,” IEEE/ACM Transactions on Networking, 2022.CCF AIF3.796

20. En Wang, Weiting Liu, Wenbin Liu, Yongjian Yang, Bo Yang, Jie Wu. “Spatiotemporal Urban Inference and Prediction in Sparse Mobile CrowdSensing: a Graph Neural Network Approach,” IEEE Transactions on Mobile Computing2022.CCF AIF6.075

21. Yuanbo Xu, En Wang*, Yongjian Yang, Yi Chang, “A Unified Collaborative Representation Learning for Neural-Network based Recommender Systems,” IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11):5126-5139.CCF AIF: 9.235

22. En Wang, Jiatong Cai, Yongjian Yang, Wenbin Liu, Hengzhi Wang, Bo Yang, Jie Wu, “Trustworthy and Efficient Crowdsensed Data Trading on Sharding Blockchain, “ IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3547-3561.CCF AIF13.081

23. En Wang, Yuanbo Xu, Yongjian Yang, Yiheng Jiang, Fukang Yang, Jie Wu, “Zone-Enhanced Spatio-Temporal Representation Learning for Urban POI Recommendation,” IEEE Transactions on Knowledge and Data Engineering2023. CCF AIF: 9.235

2代表性會議

1. Wenbin Liu, Yongjian Yang, En Wang*, Jie Wu. Dynamic User Recruitment with Truthful Pricing for Mobile CrowdSensing. IEEE INFOCOM 2020.CCF A

2. En Wang, Yuanbo Xu, Yongjian Yang, Fukang Yang, Chunyu Liu, Yiheng Jiang. ToP: Time-dependent Zone-enhanced Points-of-interest Embedding-based Explainable Recommender system. IEEE INFOCOM 2021. (CCF A)

3. En Wang, Mijia Zhang, Yuanbo Xu, Haoyi Xiong, Yongjian Yang. Spatiotemporal Fracture Data Inference in Sparse Urban CrowdSensing. IEEE INFOCOM 2022. (CCF A)

4. Hengzhi Wang, En Wang*, Yongjian Yang, Jie Wu, Falko Dressler. Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing: A Graph-based Approach. IEEE INFOCOM 2022. (CCF A)

5. Wenbin Liu, En Wang*, Yongjian Yang, Jie Wu. Worker Selection Towards Data Completion for Online Sparse Crowdsensing. IEEE INFOCOM 2022. (CCF A)

6. En Wang, Yiheng Jiang, Yuanbo Xu, Liang Wang, Yongjian Yang. Spatial-Temporal Interval Aware Sequential POI Recommendation. IEEE ICDE 2022. (CCF A)

7. En Wang, Mijia Zhang, Yongjian Yang, Yuanbo Xu*, Jie Wu. Exploiting Outlier Value Effects in Sparse Urban CrowdSensing. IEEE IWQoS 2021. (CCF B)

8. En Wang, Dongming Luan, Yongjian Yang, Zihe Wang, Pengmin Dong, Dawei Li, Wenbin Liu, Jie Wu. Distributed Game-Theoretical Route Navigation for Vehicular Crowdsensing. ACM ICPP 2021. (CCF B)

9. Hengzhi Wang, Yongjian Yang, En Wang*, Wenbin Liu, Yuanbo Xu, Jie Wu. Combinatorial Multi-Armed Bandit Based User Recruitment in Mobile Crowdsensing. IEEE SECON 2020.CCF B

10. Leye Wang, Wenbin Liu, Daqing Zhang, Yasha Wang, En Wang*, Yongjian Yang. Cell Selection with Deep Reinforcement Learning in Sparse Mobile Crowdsensing. IEEE ICDCS 2018.CCF B

11. En Wang, Weiting Liu, Wenbin Liu, Chaocan Xiang, Bo Yang, Yongjian Yang, “Spatiotemporal Transformer for Data Inference and Long Prediction in Sparse Mobile CrowdSensing,” IEEE INFOCOM 2023.CCF A

12. En Wang, Zijie Tian, Yongjian Yang, Wenbin Liu, Baoju Li, Nan Jiang, Jie Wu, “Data-Driven Similarity-based Worker Recruitment Towards Multi-task Data Inference for Sparse Mobile Crowdsensing,” IEEE IWQoS 20232023. CCF B


獲獎情況:

[1] 教育部重大人才工程青年學者,2023年;

[2] 吉林省第八批拔尖創新人才(吉林省人民政府),2022年;

[3] 吉林省人社廳拔尖D類人才,2020年;

[4] 吉林省青年人才托舉計劃入選者(全省12),2019年;

[5] 伟德国际BETVlCTOR首屆“培英工程”計劃入(資助 50 /年,計算機學科唯一入選者),2017年;

[6] 伟德国际BETVlCTOR“唐敖慶學者”領軍教授,2022年;

[7] 吉林省優秀博士學位論文獎,2017年;

[8] ACM China 優秀博士學位論文獎,2017年;

[9] 面向多模态群智感知的接觸網施工同步智能檢測關鍵技術及應用,中國鐵道學會科學技術二等獎(15/20,2023年;

[10] 伟德国际BETVlCTOR首屆十佳研究生,2016年;

[11] 伟德国际BETVlCTOR第九屆青年教師教學水平大賽二等獎,2020年;

[12] 伟德国际BETVlCTOR(力旺)傑出博士後獎(計算機學科唯一入選者),2021年;

[13] CCF Trans. on Pervasive Computing and Interaction最佳審稿人,2021年;


承擔項目情況:

作為項目負責人主持承擔了多項國家級、省級科研項目,部分列舉如下:

1. 2020.01-2023.12  視覺群智感知中移動終端感知成本優化的研究(No. 61972450國家自然科學基金面上項目

2. 2023.01-2026.12 基于群智感知的城市大氣污染立體監測和預報理論與方法研究(No. 62272193) 國家自然科學基金面上項目

3. 2018.01-2020.12 移動社會網絡中以優化報文投遞率為目标的關鍵技術研究(No. 61702215國家自然科學基金青年項目

4. 2021.12-2025.11 複雜動态系統智能理論與方法研究(No. 2021ZD0112500科技創新2030新一代人工智能重大項目(課題一)

5. 2022.12-2025.11 智能算法模型安全評估與風險監測技術(No. 2022YFB3103700 科技部重點研發計劃(課題二)

6. 2017.06-2019.06 移動群智感知中基于移動性預測的用戶招募問題研究(No. 2017M611322中國博士後面上基金項目

7. 2018.06-2020.06  基于D-LBSNs的移動推薦系統研究(No. 2018T110247中國博士後特别資助項目

8. 2019.01-2021.01移動群智感知中用戶激勵與招募問題的關鍵技術研究(No.20190201022JC吉林省自然科學基金項目

9. 2019.06-2021.06 以實現數據高效采集為目标的群智感知資源調度策略研究(No. 61421010418國防科技重點實驗室基金項目

10. 2021.01-2022.12 基于博弈論優化多智能體深度強化學習研究及其在城市物流衆包任務中的應用(No. 2021PP15002000CCF-百度松果基金


學術任職和服務:

[1] 中國計算機學會高級會員;          [2] 中國計算機學會青年工作委員會委員;

[3] 中國計算機學會物聯網專委會委員;  [4] 中國計算機學會普适計算專委會委員;

[5] 中國計算機學會互聯網專委會委員;  [6] 吉林省通信學會理事;

[7] 中國電子學會物聯網青年專技組委員; [8] ACM SIGBED China委員;

[9] ACM China圖靈大會宣講委員會主席,2021年;

[10] CCF A類會議IEEE INFOCOM 程序委員會委員, 2021-2023

[11] CCF A類會議IEEE AAAI 程序委員會委員, 2023

[12] CCF B類會議IEEE IPDPS 程序委員會委員, 2023

[13] CCF B類會議IEEE SECON 程序委員會委員, 2022-2023

[14] CCF AINFOCOM分會場主席,2022年; [15] CCF BIWQoS分會場主席,2021年;

[16] CCF C類會議MASS分會場主席,2020年;[17] 第四屆中國軟件開源創新大賽評委;

[18] CCF C類會議MSN大會 Tutorial Chair,2022年;

[19] 9屆全國智能信息處理學術會議(NCIIP)出版主席,2023年;

[20] 第十四屆吉林省科協青年科學家分論壇執行主席,2020年;

[21] Frontiers of Computer Science(FCS)青年編委,2022-至今;


聯系方式:

[1] 電話 : 13756494481

[2] 微信 : wangen0310

[3] 郵箱 : wangen@jlu.edu.cn


Baidu
sogou